沟通咨询
提交成功

张钹院士:基础科研不光要允许失败,还要经得起失败,“馊主意”也比没主意好

2020.10.26
媒体报道

本文经AI新媒体量子位(公众号 ID: QbitAI)授权转载,转载请联系出处

 

「我们要造新灯塔,照亮新航道。」

 

这是清华大学人工智能研究院院长、中国科学院院士张钹教授,对任正非把基础研究比喻为灯塔的回应。

 

也是张钹教授给当前人工智能发展提出的新思路,因为新灯塔和新航道,正是他反复强调的第三代人工智能

 

在纪念《中国科学》创刊70周年的专刊中,张钹教授以通信作者发出《迈向第三代人工智能》文章,指出是时候把第一代的知识驱动和第二代的数据驱动结合起来,通过利用知识、数据、算法和算力等 4 个要素,构造更强大的人工智能。

 

图片
 

而在量子位的采访中,张钹教授进一步解释了发展第三代人工智能的重要性、紧迫性,特别是当前在基础科研方面遭遇“卡脖子”的中国。

 

张钹教授还进一步指出了基础科研和教育中的关键挑战。不仅有国家院士的忧思,还包含了对于人才培养制度的积利除弊,每一个思考都振聋发聩。

 

为了更加完整展现张钹教授思考,我们以第一人称方式呈现本次采访,内容在不更改原意的基础上,进行了编辑。方便阅读的小标题,亦为后添加。

 

以下是全文:

 

图片
 
 
 

现在最关键是对AI发展现状的正确评估

 

当前全世界来讲,我们今后从信息科技走向智能化、走向人工智能的前景,无论从社会发展的角度,从经济发展的角度,大家都有共识。信息化网络化以后,未来就是智能化,这个大家没有太多分歧。 

 

但最关键的问题是对发展现状的评估。

 

总体来讲,至少前一阶段,业界估计得过分乐观。这个也不是第一次,人工智能整个发展过程中,总体的估计总是乐观,乐观以后出问题了就低潮,低潮以后又乐观,再产生新东西。

 

本质是对人工智能的艰巨性认识不足,都以为说我们人的智力很强,既然过去信息技术发展得那么快,下一步搞智能化肯定也会是很快的。

 

这么想问题是没有顾及到,AI要涉及到人的智能问题,这个是一个很难的问题,我们自己对自己的了解,特别是对大脑的了解太少了,无知就无畏,往往很多东西就把它想得太简单了。

 

图片
 
 
 

为什么讲第三代AI?因为中国有历史性机遇

 

这段时间,特别是在深度学习出现高潮后,新的乐观情绪又出来了。

 

在这种情况下,我在很多场合强调人工智能才刚刚开始,还处在初级阶段,我们的路还很远还很困难。

 

刚开始因为大多数人都很乐观,我也不宜去泼冷水,所以说得比较模糊,后来大多数人逐步认识到过去太乐观了,所以我也开始讲得更加明确。

 

现在提出第三代人工智能,非常明确地讲,我们的第一代、第二代AI,都只是序幕,都还没到正戏正剧。

 

第三代人工智能才是这个正剧,这个正剧之于中国,机会也很明显。

 

第一,历史上看,就信息革命而言,它从二战前后开始,至今差不多有80年,我们有40多年没有参与其中。

 

所有关键的重要的贡献,都是外国人做的。计算机理论、计算机、晶体管、集成电路……一路下来,关键技术都是人家提出和掌握的,我们一直是后来者、追赶者,追赶极为困难。

 

 

解决卡脖子就得“相互依赖”

 

如果我们一直是跟随者,能跟上就很不错了。现在的状态是基本跟得上,但有些关键技术,比如集成电路总是跟不上。

 

所以问题该怎么解?

 

我认为只有抓住新的技术革命,从一开始就是参与者,在当中做出关键贡献,不让技术完全掌握在别人手里,有几个关键技术我们作得最好。

 

比如拿光刻机来讲,这里头有上千道工序,有大量的工艺问题,材料问题,各种各样的问题……。任何一个国家都不可能掌握其中的所有技术,实际上,光刻机中的关键技术被荷兰、美国、德国和日本等许多国家分别掌握。遗憾的是我们中国不在其中,人家就能卡你。

 

为什么形成这个局面?

 

因为在发展过程中,你都不是参与者,你是旁观者,到现在才过来追赶,那就非常困难了。 

 

问题不是要求我们去掌握所有技术,而是有一两项技术你是第一,别人就卡不了你。

 

真相是你中有我,我中有你,大家互相依赖罢了。日本人掌握了光刻胶技术,所有光刻胶都得跟他买,谁也不敢卡了。作为追赶者就很难做到这一点,必须是从头到尾的参与者。

 

图片
 

这也是我为什么疾呼发展第三代人工智能

 

因为第三代人工智能刚刚开始,我们在同一起跑线上。我们历史上错过了好多机会,现在有机会跟全世界在同一起跑线上,如果做好了,做大了,别人就卡不了我们。

 

另外,现在还有个误解,认为在深度学习上,我们跟国际在同一起跑线上,我要纠正一下这个想法。

 

不对的!

 

在深度学习上我们已经落后人家了。

 

深度学习从什么时候开始?1943年开始,发展到今天已经有六七十年历史,我们跟别人不在一个起跑线上。

 

甚至现在乐观到认为深度学习我们领先,不可能的。深度学习在六七十年发展过程中,我数了一下,做出重要贡献的大概有7-8个国家,没有一个属于中国。

 

在这种情况下,你怎么可能跟人家在一个起跑线上?

好在第一代第二代人工智能已经过去了,那只是序幕,我们可以不去管它了。

 

图片
 
 
 

冲击AI无人区,比搞两弹还难

 

过去错过的已经错过了,大部分的追赶任务可以留给企业去完成,科学研究应该在新航道(赛道)上下功夫,勇闯无人区。

 

我常说研究第三代人工智能,目标不明确,研究路线也大不清楚,可能比搞两弹还难,同时这方面我们还缺乏经验。

 

两弹很难,但目标非常明确,已经有人做出来了,是一个追赶的问题。

 

人工智能是一个无人区,你根本就不知道怎么做,全世界都不知道怎么做,是一项探索任务,所以需要完全不同的体制机制。

 

我们做追赶任务有很多经验,因为目标很明确,可以利用举国体制动员全国力量来完成。

 

但人工智能是无人区,目标不明确,路线也不清楚,怎么组织大家攻关?肯定要建立一个宽松的环境,让大家去自由探索,不可能从上到下做一个统一计划,第一步干什么、第二步干什么,那肯定难以成功。

 

无人区的探索,靠少数专家计划和具体安排也是不行的。

 

所以归根结底,我还是要强调,现在我们有一个非常好的机会,百年不遇,不容错过。

 

第一代、第二代人工智能已经过去了,我们要着眼未来,瞄准第三代人工智能。

 

图片
 
 
 
 

我们该造新灯塔,照亮新航道

 

任正非把基础研究比作灯塔,这个比喻很好。他还说我们过去是照着美国人的灯塔去走的,跟着他照亮的路走,现在美国人的灯塔要对中国关闭,怎么办?

 

我想说的是,美国灯塔管它亮不亮,我们都要在新的航道上造个新的灯塔,以照亮新的航道。

 

第三代人工智能,就是新的航道(或者赛道),也是新的希望,我们中国人奔向这个新航道,在这个新航道上有可能做出好成绩。

 

第一代第二代的旧航道,我们有些落伍,需要有人去追赶和落地。我们的着力点应该在新的航道上。

 

图片
 
 
 

科研必须高举开放和国际化

 

但也要注意,造新灯塔、照亮新航道,发展第三代人工智能,不是只供我们自己使用,而是要照亮全世界,引领全世界共同启航。

 

美国人越讲断供,我们就越要高举科学无国界、坚持开放和国际化。他们要把我们剔出去,我们必须反其道而行之。

 

刚才也说了,解决卡脖子不是样样都自己搞、每一项自己都是第一,而应该相互依赖,共同发展,只要有一两项你是第一,你就有了话语权。

 

科学研究是全世界的共同事业,人类是命运共同体,特朗普政府在科技上想与中国脱钩,既不符合全人类的利益,也违背广大科技工作者的意愿,实际上也行不通。实际上,特兰普政府的各种动作对科学界的影响并不大。

 

发展第三代人工智能必须高举开放和国际化,必须全世界团结起来,共同发展,以造福全人类。

 

我常跟年轻学生讲,搞研究要避免发明中国人才懂的词,一个词你用了,就得考虑英文怎么写,国外人看得懂看不懂,不然怎么跟你一起走?怎么引领全世界?

 

不要关起门来搞什么“中国的科学”,科学只有一种,不存在东方的科学,西方的科学。有东方的文化、西方的文化,但科学全世界就只有一种。所以在科学的基本表达上,就得让对方看懂。

 

我们写的“迈向第三代人工智能”的文章,已经在《中国科学》上发表了,很多同事和朋友看后,建议我们把这篇文章译为英文发表,这个建议很好,我们正在做。

 

图片
 
 
 

第三代AI当前关键问题是算法

 

发展第三代人工智能,依靠知识、数据、算法和算力四个要素,这四个要素是什么关系?

 

发展第三代AI依靠的是两项资源,即知识和数据,通过算法与算力把这两个资源利用起来。知识、数据和算力资源我们都还可以。

 

而关键的问题是算法,因为目前所有原始的AI算法都是外国人弄的,算法从哪里来?从基础研究中来,因此发展第三代AI首先要抓基础研究。清华大学人工智能研究院在算法研究上取得一些进展,我们发布了“珠算”概率编程库,这是一个开源算法平台,其中有我们设计的新算法。

 

我反复强调要抓住这个处于同一起跑线的机会,多做出成绩,把生态建立起来,就不怕别人卡脖子,也有了话语权。

 

之前几年,大家对深度学习都很乐观,我讲的内容可能不容易被接受,现在慢慢很多人都能接受了。

 

因为多数人没有经历过AI发展的全过程,没有看到“全貌”,只是看到其中很小的一部分,因此很难看清楚。

 

我们从1978年就开始从事人工智能研究,经历过70年代到80年代的高潮,也体会到90年代的低谷,再到现在的重新高潮,经过40多年的风雨,才逐步搞清楚AI的目标是什么,我们现在离目标还有多远等等。

 

符号主义虽然不成功,但它涉及到人工智能的核心问题。

 

深度学习尽管最初受神经科学的启发,但是后来发展出来的一套算法,完全是基于概率统计的传统信息处理方法,其所以获得成功,关键在于计算机算力的提高。现在大家把深度学习的所有功劳都归于人工智能,这其实是错觉。

 

大家应该注意到,第三代人工智能我们是把知识放在第一位,数据放在第二,算法放在第三位,算力放在最后,这个排序是经过仔细琢磨,不是随便排的。主要是强调“知识”在发展人工智能中的重要性。

 

网络时代数据量指数增长,计算机处理数据的能力远比人类强,所以将知识处理与数据处理结合起来,可以发挥人类与机器的共同作用。

 

最后,解决了资源问题,现在要回到利用资源的方法,即需要有好的算法。目前针对数据的算法比较多,知识处理的算法则很少,所以在我们研究院专门成立了一个叫知识智能的研究中心,就是想通过它加强处理知识的研究。目前在我国研究知识驱动方法的人很少,是我们的短板。以2018年国际人工智能联合大会(IJCAI)上发表的主要论文来看,与机器学习有关的论文,中国人发表的论文占70%左右,而与知识处理有关的论文,几乎没有我们的文章。我们建立的通用知识库也远比美国少。

 

图片